Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 1685, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402239

RESUMO

The cargo content in small extracellular vesicles (sEVs) changes under pathological conditions. Our data shows that in obesity, extracellular matrix protein 1 (ECM1) protein levels are significantly increased in circulating sEVs, which is dependent on integrin-ß2. Knockdown of integrin-ß2 does not affect cellular ECM1 protein levels but significantly reduces ECM1 protein levels in the sEVs released by these cells. In breast cancer (BC), overexpressing ECM1 increases matrix metalloproteinase 3 (MMP3) and S100A/B protein levels. Interestingly, sEVs purified from high-fat diet-induced obesity mice (D-sEVs) deliver more ECM1 protein to BC cells compared to sEVs from control diet-fed mice. Consequently, BC cells secrete more ECM1 protein, which promotes cancer cell invasion and migration. D-sEVs treatment also significantly enhances ECM1-mediated BC metastasis and growth in mouse models, as evidenced by the elevated tumor levels of MMP3 and S100A/B. Our study reveals a mechanism and suggests sEV-based strategies for treating obesity-associated BC.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Proteínas da Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Integrinas , Metaloproteinase 3 da Matriz/genética , Obesidade
2.
Phys Chem Chem Phys ; 26(3): 2486-2496, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170642

RESUMO

We investigate the spectral and temporal atomic coherence interaction based on out-of-phase fluorescence (FL) and spontaneous parametric four-wave mixing (SFWM) from the hexagonal phase of Eu3+ : NaYF4 and different phases of Eu3+ : BiPO4. Spectral and temporal interactions are interrelated and reduced by about 2 times due to two-photon nested dressing in contrast to the sum of each laser excitation. As the lifetime of photons increases, off-resonance profile cross-interaction decreases because cross-interaction reverses the signal at the near time gate position and keeps it consistent at the far time gate position. Moreover, the thermal phonon dressing at 300 K exhibits 6 times more eminent and obvious temporal interaction than that at 77 K. In a different phase of Eu3+ : BiPO4, there are three dark dips having stronger self-interaction; however, Eu3+ : NaYF4 has two dark dips as Eu3+ : BiPO4 has two phonon dressing. Further, the pure hexagonal phase of Eu3+ : BiPO4 demonstrates the strongest cross-interaction and longest coherent time under the dressing effect due to the smallest dressing phonon detuning and off-resonance profile cross-interaction at PMT2 because the angle quantization is the strongest. Such results can be used for designing novel quantum devices and have potential applications in quantum memory devices.

3.
Front Neurosci ; 17: 1057551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706156

RESUMO

Introduction: Conductive hearing loss (CHL) attenuates the ability to transmit air conducted sounds to the ear. In humans, severe hearing loss is often accompanied by alterations to other neural systems, such as the vestibular system; however, the inter-relations are not well understood. The overall goal of this study was to assess vestibular-related functioning proxies in a rat CHL model. Methods: Male Sprague-Dawley rats (N=134, 250g, 2months old) were used in a CHL model which produced a >20dB threshold shift induced by tympanic membrane puncture. Auditory brainstem response (ABRs) recordings were used to determine threshold depth at different times before and after CHL. ABR threshold depths were assessed both manually and by an automated ABR machine learning algorithm. Vestibular-related functioning proxy assessment was performed using the rotarod, balance beam, elevator vertical motion (EVM) and Ferris-wheel rotation (FWR) assays. Results: The Pre-CHL (control) threshold depth was 27.92dB±11.58dB compared to the Post-CHL threshold depth of 50.69dB±13.98dB (mean±SD) across the frequencies tested. The automated ABR machine learning algorithm determined the following threshold depths: Pre-CHL=24.3dB, Post-CHL same day=56dB, Post-CHL 7 days=41.16dB, and Post-CHL 1 month=32.5dB across the frequencies assessed (1, 2, 4, 8, 16, and 32kHz). Rotarod assessment of motor function was not significantly different between pre and post-CHL (~1week) rats for time duration (sec) or speed (RPM), albeit the former had a small effect size difference. Balance beam time to transverse was significantly longer for post-CHL rats, likely indicating a change in motor coordination. Further, failure to cross was only noted for CHL rats. The defection count was significantly reduced for CHL rats compared to control rats following FWR, but not EVM. The total distance traveled during open-field examination after EVM was significantly different between control and CHL rats, but not for FWR. The EVM is associated with linear acceleration (acting in the vertical plane: up-down) stimulating the saccule, while the FWR is associated with angular acceleration (centrifugal rotation about a circular axis) stimulating both otolith organs and semicircular canals; therefore, the difference in results could reflect the specific vestibular-organ functional role. Discussion: Less movement (EVM) and increase time to transverse (balance beam) may be associated with anxiety and alterations to defecation patterns (FWR) may result from autonomic disturbances due to the impact of hearing loss. In this regard, vestibulomotor deficits resulting in changes in balance and motion could be attributed to comodulation of auditory and vestibular functioning. Future studies should manipulate vestibular functioning directly in rats with CHL.

4.
ACS Appl Mater Interfaces ; 15(27): 33037-33045, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37382220

RESUMO

Ultrasensitive sensing to trace atomic and molecular analytes has gained interest for its intimate relation to industrial sectors and human lives. One of the keys to ultrasensitive sensing for many analytical techniques lies in enriching trace analytes onto well-designed substrates. However, the coffee ring effect, nonuniform distribution of analytes onto substrates, in the droplet drying process hinders the ultrasensitive and stable sensing onto the substrates. Here, we propose a substrate-free strategy to suppress the coffee ring effect, enrich analytes, and self-assemble a signal-amplifying (SA) platform for multimode laser sensing. The strategy involves acoustically levitating and drying a droplet, mixed with analytes and core-shell Au@SiO2 nanoparticles, to self-assemble an SA platform. The SA platform with a plasmonic nanostructure can dramatically enrich analytes, enabling enormous spectroscopic signal amplification. Specifically, the SA platform can promote atomic detection (cadmium and chromium) to the 10-3 mg/L level by nanoparticle-enhanced laser-induced breakdown spectroscopy and can promote molecule detection (rhodamine 6G) to the 10-11 mol/L level by surface-enhanced Raman scattering. All in all, the SA platform, self-assembled by acoustic levitation, can intrinsically suppress the coffee ring effect and enrich trace analytes, enabling ultrasensitive multimode laser sensing.

5.
Cereb Cortex ; 33(10): 5863-5874, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36795038

RESUMO

The cortical distribution and functional role of cholecystokinin (CCK) are largely unknown. Here, a CCK receptor antagonist challenge paradigm was developed to assess functional connectivity and neuronal responses. Structural-functional magnetic resonance imaging and calcium imaging were undertaken in environmental enrichment (EE) and standard environment (SE) groups (naïve adult male mice, n = 59, C57BL/B6J, P = 60). Functional connectivity network-based statistics and pseudo-demarcation Voronoi tessellations to cluster calcium signals were used to derive region of interest metrics based on calcium transients, firing rate, and location. The CCK challenge elicited robust changes to structural-functional networks, decreased neuronal calcium transients, and max firing rate (5 s) of dorsal hippocampus in SE mice. However, the functional changes were not observed in EE mice, while the decreased neuronal calcium transients and max firing rate (5 s) were similar to SE mice. Decreased gray matter alterations were observed in multiple brain regions in the SE group due to CCK challenge, while no effect was observed in the EE group. The networks most affected by CCK challenge in SE included within isocortex, isocortex to olfactory, isocortex to striatum, olfactory to midbrain, and olfactory to thalamus. The EE group did not experience network changes in functional connectivity due to CCK challenge. Interestingly, calcium imaging revealed a significant decrease in transients and max firing rate (5 s) in the dorsal CA1 hippocampus subregion after CCK challenge in EE. Overall, CCK receptor antagonists affected brain-wide structural-functional connectivity within the isocortex, in addition to eliciting decreased neuronal calcium transients and max firing rate (5 s) in CA1 of the hippocampus. Future studies should investigate the CCK functional networks and how these processes affect isocortex modulation. Significance Statement  Cholecystokinin is a neuropeptide predominately found in the gastrointestinal system. Albeit abundantly expressed in neurons, the role and distribution of cholecystokinin are largely unknown. Here, we demonstrate cholecystokinin affects brain-wide structural-functional networks within the isocortex. In the hippocampus, the cholecystokinin receptor antagonist challenge decreases neuronal calcium transients and max firing rate (5 s) in CA1. We further demonstrate that mice in environmental enrichment do not experience functional network changes to the CCK receptor antagonist challenge. Environmental enrichment may afford protection to the alterations observed in control mice due to CCK. Our results suggest that cholecystokinin is distributed throughout the brain, interacts in the isocortex, and demonstrates an unexpected functional network stability for enriched mice.


Assuntos
Colecistocinina , Conectoma , Camundongos , Masculino , Animais , Receptores da Colecistocinina , Cálcio , Camundongos Endogâmicos C57BL , Hipocampo
6.
Bipolar Disord ; 25(1): 56-65, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409044

RESUMO

BACKGROUND: The use of lithium during breast-feeding has not been comprehensively investigated in humans due to concerns about lithium toxicity. PROCEDURE: We analyzed lithium in the kidneys of nursed pups of lithium medicated mothers, using analytical spectroscopy in a novel rat model. The mothers were healthy rats administered lithium via gavage (1000 mg/day Li2 CO3 per 50 kg body weight). RESULTS: Lithium was detected in the breast milk, and in the blood of pups (0.08 mM), of lithium-exposed dams at post-natal day 18 (P18), during breast-feeding. No lithium was detected after breast-feeding, at P25 (4 days after cessation of nursing). The lithium pups blood had elevated urea nitrogen at P18 and reduced total T4 at P18 and P25, indicating a longer-term effect on the kidneys and the thyroid gland. Multivariate machine-learning analysis of spectroscopy data collected from the excised kidneys of pups showed elevated potassium in lithium-exposed animals both during- and after breast-feeding. The elevated renal potassium was associated with low nephrin expression in the kidneys measured immunohistochemically during breast-feeding. After lithium exposure is stopped, the filtration of lithium from the kidneys reverses these effects. Our study showed that breastfeeding during lithium use has an effect on the kidneys of the offspring in rats.


Assuntos
Transtorno Bipolar , Leite Humano , Feminino , Ratos , Lactente , Humanos , Animais , Leite Humano/química , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Rim , Potássio/análise , Potássio/uso terapêutico , Aleitamento Materno
7.
Cell Mol Life Sci ; 79(11): 570, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306016

RESUMO

BACKGROUND: Obesity affects the cargo packaging of the adipocyte-derived exosomes. Furthermore, adipocytes in different adipose tissues have different genetic makeup, the cargo contents of the exosomes derived from different adipose tissues under obesity conditions should be different, and hence their impacts on the pathophysiological conditions. METHODS AND RESULTS: iTRAQ-based quantitative proteomics show that obesity has more prominent effects on the protein profiles of the exosomes derived from subcutaneous adipose tissue (SAT-Exos) in the high fat diet-induced obesity (DIO) mice than those derived from epididymal adipose tissue (EAT-Exos) and visceral adipose tissue (VAT-Exos). The differentially expressed proteins (DEPs) in SAT-Exos and VAT-Exos are mainly involved in metabolism. Subsequent untargeted metabolomic and lipidomics analyses reveal that injection of these SAT-Exos into the B6/J-Rab27a-Cas9-KO mice significantly affects the mouse metabolism such as fatty acid metabolism. Some of the DEPs in SAT-Exos are correlated with fatty acid metabolism including ADP-ribosylation factor and mitogen-activated protein kinase kinase kinase-3. Pathway analysis also shows that SAT-Exos affect adipocyte lipolysis and glycerophospholipid metabolism, which is in parallel with the enhanced plasma levels of fatty acids, diglycerides, monoglycerides and the changes in glycerophospholipid levels in DIO mice. CONCLUSION: Our data provide scientific evidence to suggest SAT-Exos contribute to the changes in plasma lipid profiles under obesity conditions.


Assuntos
Exossomos , Camundongos , Animais , Exossomos/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Camundongos Obesos , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/metabolismo
8.
ACS Sens ; 7(5): 1381-1389, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35584047

RESUMO

Sensing of hazardous metals is urgent in many areas (e.g., water pollution and meat products) as heavy metals threaten people's health. Laser-induced breakdown spectroscopy (LIBS), as a rapid, in situ, and multielemental analytical technique, has been widely utilized in rapid hazardous heavy metal sensing. However, loose and water-containing samples (e.g., meat, plant, and soil) are hard to analyze by LIBS directly, and heavy metal depth profiling for bulk samples remains suspenseful. Here, inspired by the Needle, the sword of Arya Stark in Game of Thrones, we propose an insertable, scabbarded, and nanoetched silver (NE-Ag) needle sensor for rapid hazardous element sensing and depth profiling. The NE-Ag needle sensor features a micro-nanostructure surface for inserting into the bulk sample and absorbing hazardous analytes. For accurate elemental depth profiling, we design a stainless-steel scabbard to wrap and protect the NE-Ag needle from pollution (unexpected contaminant absorption) during the needle insertion and extraction process. The results for cadmium (Cd) show that the relative standard deviation equals to 6.7% and the limit of detection reaches 0.8 mg/L (ppm). Furthermore, the correlations (Pearson correlation coefficient) for Cd and chromium (Cr) depth profiling results are no less than 0.96. Furthermore, the total testing time could be less than 1 h. All in all, the insertable and scabbarded NE-Ag needle senor has high potential in rapid hazardous heavy metal depth profiling in different industries.


Assuntos
Metais Pesados , Prata , Cádmio , Humanos , Lasers , Prata/química , Análise Espectral/métodos
9.
Neuroimage ; 252: 119016, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189359

RESUMO

Environmental enrichment induces widespread neuronal changes, but the initiation of the cascade is unknown. We ascertained the critical period of divergence between environmental enriched (EE) and standard environment (SE) mice using continuous infrared (IR) videography, functional magnetic resonance imaging (fMRI), and neuron level calcium imaging. Naïve adult male mice (n = 285, C57BL/6J, postnatal day 60) were divided into SE and EE groups. We assessed the linear time-series of motion activity using a novel structural break test which examined the dataset for change in circadian and day-by-day motion activity. fMRI was used to map brain-wide response using a functional connectome analysis pipeline. Awake calcium imaging was performed on the dorsal CA1 pyramidal layer. We found the preeminent behavioral feature in EE was a forward shift in the circadian rhythm, prolongation of activity in the dark photoperiod, and overall decreased motion activity. The crepuscular period of dusk was seen as the critical period of divergence between EE and SE mice. The functional processes at dusk in EE included increased functional connectivity in the visual cortex, motor cortex, retrosplenial granular cortex, and cingulate cortex using seed-based analysis. Network based statistics found a modulated functional connectome in EE concentrated in two hubs: the hippocampal formation and isocortical network. These hubs experienced a higher node degree and significant enhanced edge connectivity. Calcium imaging revealed increased spikes per second and maximum firing rate in the dorsal CA1 pyramidal layer, in addition to location (anterior-posterior and medial-lateral) effect size differences between EE and SE. The emergence of functional-neuronal changes due to enrichment consisted of enhanced hippocampal-isocortex functional connectivity and CA1 neuronal increased spiking linked to a circadian shift during the dusk period. Future studies should explore the molecular consequences of enrichment inducing shifts in the circadian period.


Assuntos
Cálcio , Meio Ambiente , Animais , Encéfalo/fisiologia , Hipocampo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Front Syst Neurosci ; 15: 655172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456689

RESUMO

Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.

11.
Analyst ; 146(16): 5186-5197, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34297019

RESUMO

Lithium salts are commonly used as medication for Bipolar Disorder (BD) and depression. However, there are limited methods to quantify intracellular lithium. Most methods to analyze intracellular electrolytes require tedious sample processing, specialized and often expensive machinery, sometimes involving harmful chemicals, and a bulk amount of the sample. In this work, we report a novel method (FROZEN!) based on cell isolation (from the surrounding medium) through rapid de-ionized water cleaning, followed by flash freezing for preservation. SKOV3 cells were cultured in normal medium and a medium containing 1.0 mM lithium. Lithium and other intracellular electrolytes in the isolated and preserved cells were simultaneously analyzed with laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence spectroscopy (XRF). Key electrolytes such as sodium, potassium, and magnesium, along with lithium, were detectable at the single-cell level. We found that cells cultured in the lithium medium have an intracellular lithium concentration of 0.5 mM. Concurrently, the intracellular concentrations of other positively charged electrolytes (sodium, potassium, and magnesium) were reduced by the presence of lithium. FROZEN! will greatly facilitate research in intracellular electrolyte balance during drug treatment, or other physiological stresses. In particular, the cell isolation and preservation steps can be easily performed by many laboratories worldwide, after which the samples are sent to an analytical laboratory for electrolyte analysis.


Assuntos
Eletrólitos , Lítio , Animais , Congelamento , Potássio , Sódio
12.
ACS Omega ; 6(22): 13995-14003, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124424

RESUMO

The impact of radiation-induced bystander effect (RIBE) is still not well understood in radiotherapy. RIBEs are biological effects expressed by nonirradiated cells near or far from the irradiated cells. Most radiological studies on cancer cells have been based on biochemical characterization. However, biophysical investigation with label-free techniques to analyze and compare the direct irradiation effect and RIBE has lagged. In this work, we employed an electrical cell-indium tin oxide (ITO) substrate impedance system (ECIIS) as a bioimpedance sensor to evaluate the HeLa cells' response. The bioimpedance of untreated/nonirradiated HeLa (N-HeLa) cells, α-particle (Am-241)-irradiated HeLa (I-HeLa) cells, and bystander HeLa (B-HeLa) cells exposed to media from I-HeLa cells was monitored with a sampling interval of 8 s over a period of 24 h. Also, we imaged the cells at times where impedance changes were observed. Different radiation doses (0.5 cGy, 1.2 cGy, and 1.7 cGy) were used to investigate I-HeLa and B-HeLa cells' radiation-dose-dependence. By analyzing the changes in absolute impedance and cell size/number with time, compared to N-HeLa cells, B-HeLa cells mimicked the I-HeLa cells' damage and modification of proliferation rate. Contrary to the irradiated cells, the bystander cells' damage rate and proliferation rate enhancements have an inverse radiation-dose-response. Also, we report multiple RIBEs in HeLa cells in a single measurement and provide crucial insights into the RIBE mechanism without any labeling procedure. Unambiguously, our results have shown that the time-dependent control of RIBE is important during α-radiation-based radiotherapy of HeLa cells.

13.
Biosens Bioelectron ; 181: 113142, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33752028

RESUMO

Radiation-induced bystander effects (RIBE) have raised many concerns about radiation safety and protection. In RIBE, unirradiated cells receive signals from irradiated cells and exhibit irradiation effects. Until now, most RIBE studies have been based on morphological and biochemical characterization. However, research on the impact of RIBE on biophysical properties of cells has been lagging. Non-invasive indium tin oxide (ITO)-based impedance systems have been used as bioimpedance sensors for monitoring cell behaviors. This powerful technique has not been applied to RIBE research. In this work, we employed an electrical cell-ITO substrate impedance system (ECIIS) to study the RIBE on Chinese hamster ovary (CHO) cells. The bioimpedance of bystander CHO cells (BCHO), alpha(α)-particle (Am-241) irradiated CHO (ICHO), and untreated/unirradiated CHO (UCHO) cells were monitored with a sampling interval of 8 s over a period of 24 h. Media from ICHO cells exposed to different radiation doses (0.3 nGy, 0.5 nGy, and 0.7 nGy) were used to investigate the radiation dose dependence of BCHO cells' impedance. In parallel, we imaged the cells at times where impedance changes were observed. By analyzing the changes in absolute impedance and cell size/cell number with time, we observed that BCHO cells mimicked ICHO cells in terms of modification in cell morphology and proliferation rate. Furthermore, these effects appeared to be time-dependent and inversely proportional to the radiation dose. Hence, this approach allows a label-free study of cellular responses to RIBE with high sensitivity and temporal resolution and can provide crucial insights into the RIBE mechanism.


Assuntos
Técnicas Biossensoriais , Animais , Efeito Espectador , Células CHO , Cricetinae , Cricetulus , Impedância Elétrica
14.
Am J Physiol Cell Physiol ; 320(6): C974-C986, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689477

RESUMO

The working electrode's surface property is crucial to cell adhesion and signal collection in electric cell-substrate impedance sensing (ECIS). To date, the indium tin oxide (ITO)-based working electrode is of interest in ECIS study due to its high transparency and biocompatibility. Of great concern is the impedance signal loss, distortion, and data interpretation conflict profoundly created by the movement of multiple cells during ECIS study. Here, a carboxyl-terminated ITO substrate was prepared by stepwise surface amino silanization, with N-hydroxy succinimide (NHS) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) treatment, respectively. We investigated the stepwise changes in the property of the treated ITO, cell-substrate adhesion, collective cell mobility, and time course of change in absolute impedance from multiple Chinese hamster ovary (CHO) cells [(Δt-Δ|Z|)CELLS]. The carboxyl-terminated ITO substrate with a surface roughness of 6.37 nm shows enhanced conductivity, 75% visible light transparency, improved cell adherence, reduced collective cell migration speed by approximately twofold, and diminished signal distortion in the [(Δt-Δ|Z|)CELLS]. Thus, our study provides an ITO surface-treatment strategy to reduce multiple cell movement effects and to obtain essential cell information from the ECIS study of multiple cells through undistorted (Δt-Δ|Z|)CELLS.


Assuntos
Adesão Celular/efeitos dos fármacos , Compostos de Estanho/farmacologia , Animais , Técnicas Biossensoriais/métodos , Células CHO , Movimento Celular/efeitos dos fármacos , Cricetulus , Impedância Elétrica , Eletrodos
15.
Anal Chim Acta ; 1151: 338253, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33608082

RESUMO

Herein, a dried droplet method (DDM) with superhydrophobic-induced enrichment is reported for stable and ultrasensitive analysis of organic pollutants and heavy metals. A superhydrophobic (SHB) substrate was prepared as an analytical detection platform for the DDM. This SHB substrate was synthesized by sequentially coating polydimethylsiloxane (PDMS) and titanium dioxide nanoparticles (TiO2 NPs) onto glass substrate surface. In the droplet drying process, the SHB substrate was demonstrated to suppress the coffee ring effect (CRE) and enriched analyte concentration. Combining with Raman spectroscopy for analysis of methylene blue (MB), and with laser-induced breakdown spectroscopy (LIBS) for analysis of chromium (Cr), the results indicated high stability and ultra-sensitivity for organic pollutants and heavy metals detection. Overall, the DDM with superhydrophobic-induced enrichment has big potential in applications requiring stable and ultrasensitive analysis.

16.
Neuroimage ; 231: 117826, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549753

RESUMO

Hearing loss is a heterogeneous disorder thought to affect brain reorganization across the lifespan. Here, structural alterations of the brain due to hearing loss are assessed by using unique effect size metrics based on Cohen's d and Hedges' g. These metrics are used to map coordinates of gray matter (GM) and white matter (WM) alterations from bilateral congenital and acquired hearing loss populations. A systematic review and meta-analysis revealed m = 72 studies with structural alterations measured with magnetic resonance imaging (MRI) (bilateral = 64, unilateral = 8). The bilateral studies categorized hearing loss into congenital and acquired cases (n = 7,445) and control cases (n = 2,924), containing 66,545 datapoint metrics. Hearing loss was found to affect GM and underlying WM in nearly every region of the brain. In congenital hearing loss, GM decreased most in the frontal lobe. Similarly, acquired hearing loss had a decrease in frontal lobe GM, albeit the insula was most decreased. In congenital, WM underlying the frontal lobe GM was most decreased. In congenital, the right hemisphere was more negatively impacted than the left hemisphere; however, in acquired, this was the opposite. The WM alterations most frequently underlined GM alterations in congenital hearing loss, while acquired hearing loss studies did not frequently assess the WM metric. Future studies should use the endophenotype of hearing loss as a prognostic template for discerning clinical outcomes.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Longevidade/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Fatores Etários , Mapeamento Encefálico/métodos , Mapeamento Encefálico/tendências , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Análise de Regressão
17.
Am J Audiol ; 30(3S): 901-915, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33465315

RESUMO

Purpose Tinnitus and hyperacusis are debilitating conditions often associated with age-, noise-, and drug-induced hearing loss. Because of their subjective nature, the neural mechanisms that give rise to tinnitus and hyperacusis are poorly understood. Over the past few decades, considerable progress has been made in deciphering the biological bases for these disorders using animal models. Method Important advances in understanding the biological bases of tinnitus and hyperacusis have come from studies in which tinnitus and hyperacusis are consistently induced with a high dose of salicylate, the active ingredient in aspirin. Results Salicylate induced a transient hearing loss characterized by a reduction in otoacoustic emissions, a moderate cochlear threshold shift, and a large reduction in the neural output of the cochlea. As the weak cochlear neural signals were relayed up the auditory pathway, they were progressively amplified so that the suprathreshold neural responses in the auditory cortex were much larger than normal. Excessive central gain (neural amplification), presumably resulting from diminished inhibition, is believed to contribute to hyperacusis and tinnitus. Salicylate also increased corticosterone stress hormone levels. Functional imaging studies indicated that salicylate increased spontaneous activity and enhanced functional connectivity between structures in the central auditory pathway and regions of the brain associated with arousal (reticular formation), emotion (amygdala), memory/spatial navigation (hippocampus), motor planning (cerebellum), and motor control (caudate/putamen). Conclusion These results suggest that tinnitus and hyperacusis arise from aberrant neural signaling in a complex neural network that includes both auditory and nonauditory structures.


Assuntos
Córtex Auditivo , Ototoxicidade , Zumbido , Animais , Vias Auditivas , Humanos , Hiperacusia/induzido quimicamente , Zumbido/induzido quimicamente
18.
Bipolar Disord ; 23(6): 615-625, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33507599

RESUMO

BACKGROUND: Lithium is especially taken as a maintenance medication for Bipolar Disorder. In women with bipolar disorder, lithium is often effective during postpartum period, but breast-feeding for medicated mothers is controversial because of harmful effects for her child. At present, the biological mechanisms of lithium are not well-understood, affecting its usage and overall health implications. PROCEDURE: We developed a rat lithium and breast-feeding model at human therapeutic levels to study the effects of lithium exposure through breast-milk on pups' thyroid function. Novel laser analytical spectroscopy, along with traditional blood and immunohistochemical tests, were applied to further investigate the mechanisms behind the thyroid dysfunction. Maternal iodine supplementation was evaluated as a therapeutic method to address the pups' thyroid dysfunction. RESULTS: Pups exposed to lithium via breastmilk, even with the dam on a sub-therapeutic level, experienced weight gain, reduced blood thyroxine (T4 ), and elevated blood urea nitrogen, indicating effects on thyroid and kidney function. We show that lithium inhibited iodine uptake by thyroid follicles, initiating a mechanism that reduced iodination of tyrosine, thyroglobulin cleavage, and thyroid hormone production. Importantly, infant thyroid function can be significantly improved by administering supplementary iodine to the medicated dam's diet during breast-feeding. CONCLUSION: These results elucidate the mechanisms of lithium in thyroid function, provide valuable information on use postpartum, and suggest a clinically applicable remedy to side-effects. The results are particularly important for patients (and their infants) who respond well to lithium and need, or choose, to breast-feed.


Assuntos
Transtorno Bipolar , Iodo , Animais , Suplementos Nutricionais , Feminino , Humanos , Iodo/análise , Lítio , Leite Humano , Ratos , Glândula Tireoide/diagnóstico por imagem , Tireotropina
19.
Front Syst Neurosci ; 15: 807297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242015

RESUMO

Environmental enrichment is known to induce neuronal changes; however, the underlying structural and functional factors involved are not fully known and remain an active area of study. To investigate these factors, we assessed enriched environment (EE) and standard environment (SE) control mice over 30 days using structural and functional MRI methods. Naïve adult male mice (n = 30, ≈20 g, C57BL/B6J, postnatal day 60 initial scan) were divided into SE and EE groups and scanned before and after 30 days. Structural analyses included volumetry based on manual segmentation as well as diffusion tensor imaging (DTI). Functional analyses included seed-based analysis (SBA), independent component analysis (ICA), the amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF). Structural results indicated that environmental enrichment led to an increase in the volumes of cornu ammonis 1 (CA1) and dentate gyrus. Structural results indicated changes in radial diffusivity and mean diffusivity in the visual cortex and secondary somatosensory cortex after EE. Furthermore, SBA and ICA indicated an increase in resting-state functional MRI (rsfMRI) functional connectivity in the hippocampus. Using parallel structural and functional analyses, we have demonstrated coexistent structural and functional changes in the hippocampal subdivision CA1. Future research should map alterations temporally during environmental enrichment to investigate the initiation of these structural and functional changes.

20.
Curr Top Behav Neurosci ; 51: 133-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32653998

RESUMO

Tinnitus and hyperacusis are debilitating conditions often associated with aging or exposure to intense noise or ototoxic drugs. One of the most reliable methods of inducing tinnitus is with high doses of sodium salicylate, the active ingredient in aspirin. High doses of salicylate have been widely used to investigate the functional neuroanatomy of tinnitus and hyperacusis. High doses of salicylate have been used to develop novel behavioral methods to detect the presence of tinnitus and hyperacusis in animal models. Salicylate typically induces a hearing loss of approximately 20 dB which greatly reduces the neural output of the cochlea. As this weak neural signal emerging from the cochlea is sequentially relayed to the cochlear nucleus, inferior colliculus, medial geniculate, and auditory cortex, the neural response to suprathreshold sounds is progressively amplified by a factor of 2-3 by the time the signal reaches the auditory cortex, a phenomenon referred to as enhanced central gain. Sound-evoked hyperactivity also occurred in the amygdala, a region that assigns emotional significance to sensory stimuli. Resting state functional magnetic imaging of the BOLD signal revealed salicylate-induced increases in spontaneous neural activity in the inferior colliculus, medial geniculate body, and auditory cortex as well as in non-auditory areas such as the amygdala, reticular formation, cerebellum, and other sensory areas. Functional connectivity of the BOLD signal revealed increased neural coupling between several auditory areas and non-auditory areas such as the amygdala, cerebellum, reticular formation, hippocampus, and caudate/putamen; these strengthened connections likely contribute to the multifaceted dimensions of tinnitus. Taken together, these results suggest that salicylate-induced tinnitus disrupts a complex neural network involving many auditory centers as well as brain regions involved with emotion, arousal, memory, and motor planning. These extra-auditory centers embellish the basic auditory percepts that results in tinnitus and which may also contribute to hyperacusis.


Assuntos
Hiperacusia , Zumbido , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Hiperacusia/induzido quimicamente , Neuroanatomia , Ratos , Ratos Sprague-Dawley , Salicilatos , Zumbido/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...